722 lines
20 KiB
Go
722 lines
20 KiB
Go
package tabula
|
|
|
|
import (
|
|
"log"
|
|
"math"
|
|
"sort"
|
|
"sync"
|
|
)
|
|
|
|
var (
|
|
AnalysisBufferSize = 128
|
|
SubAnalysisBufferSize = 3072
|
|
)
|
|
|
|
const (
|
|
SpaceHomePlayer = 0
|
|
SpaceHomeOpponent = 25
|
|
SpaceBarPlayer = 26
|
|
SpaceBarOpponent = 27
|
|
SpaceRoll1 = 28
|
|
SpaceRoll2 = 29
|
|
SpaceRoll3 = 30
|
|
SpaceRoll4 = 31
|
|
SpaceEnteredPlayer = 32 // Whether the player has fully entered the board. Only used in acey-deucey games.
|
|
SpaceEnteredOpponent = 33 // Whether the opponent has fully entered the board. Only used in acey-deucey games.
|
|
SpaceAcey = 34 // 0 - Backgammon, 1 - Acey-deucey.
|
|
)
|
|
|
|
const (
|
|
boardSpaces = 35
|
|
)
|
|
|
|
// Board represents the state of a game. It contains spaces for the checkers,
|
|
// as well as four "spaces" which contain the available die rolls.
|
|
type Board [boardSpaces]int8
|
|
|
|
// NewBoard returns a new board with checkers placed in their starting positions.
|
|
func NewBoard(acey bool) Board {
|
|
if acey {
|
|
return Board{15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 0, 1}
|
|
}
|
|
return Board{0, -2, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, -5, 5, 0, 0, 0, -3, 0, -5, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0}
|
|
}
|
|
|
|
func (b Board) Acey() bool {
|
|
return b[SpaceAcey] == 1
|
|
}
|
|
|
|
func (b Board) SetValue(space int, value int8) Board {
|
|
b[space] = value
|
|
return b
|
|
}
|
|
|
|
// Move moves a checker on the board.
|
|
func (b Board) Move(from int, to int, player int) Board {
|
|
if b[from] == 0 || (player == 1 && b[from] < 0) || (player == 2 && b[from] > 0) {
|
|
log.Panic("illegal move: no from checker", from, to, player)
|
|
} else if b[to] != 0 {
|
|
if (player == 1 && b[to] == -1) || (player == 2 && b[to] == 1) {
|
|
b[to] = 0
|
|
if player == 1 {
|
|
b[SpaceBarOpponent]--
|
|
} else {
|
|
b[SpaceBarPlayer]++
|
|
}
|
|
} else if (player == 1 && b[to] < 0) || (player == 2 && b[to] > 0) {
|
|
b.Print()
|
|
log.Panic("illegal move: existing checkers at to space", from, to, player, b[to])
|
|
}
|
|
}
|
|
delta := int8(1)
|
|
if player == 2 {
|
|
delta = int8(-1)
|
|
}
|
|
b[from], b[to] = b[from]-delta, b[to]+delta
|
|
return b
|
|
}
|
|
|
|
// Checkers returns the number of checkers at a space. It always returns a positive number.
|
|
func (b Board) Checkers(player int, space int) int {
|
|
v := b[space]
|
|
if player == 1 && v > 0 {
|
|
return int(v)
|
|
} else if player == 2 && v < 0 {
|
|
return int(v * -1)
|
|
}
|
|
return 0
|
|
}
|
|
|
|
func (b Board) MayBearOff(player int) bool {
|
|
if b.Acey() && ((player == 1 && b[SpaceEnteredPlayer] == 0) || (player == 2 && b[SpaceEnteredOpponent] == 0)) {
|
|
return false
|
|
}
|
|
homeStart := 1
|
|
homeEnd := 6
|
|
barSpace := SpaceBarPlayer
|
|
if player == 2 {
|
|
homeStart = 19
|
|
homeEnd = 24
|
|
barSpace = SpaceBarOpponent
|
|
}
|
|
if b.Checkers(player, barSpace) != 0 {
|
|
return false
|
|
}
|
|
for space := 1; space < 25; space++ {
|
|
if space >= homeStart && space <= homeEnd {
|
|
continue
|
|
} else if b.Checkers(player, space) != 0 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (b Board) spaceDiff(player int, from int, to int) int {
|
|
switch {
|
|
case from < 0 || from > 27 || to < 0 || to > 27:
|
|
return 0
|
|
case to == SpaceBarPlayer || to == SpaceBarOpponent:
|
|
return 0
|
|
case (from == SpaceBarPlayer || from == SpaceBarOpponent) && (to == SpaceBarPlayer || to == SpaceBarOpponent || to == SpaceHomePlayer || to == SpaceHomeOpponent):
|
|
return 0
|
|
case to == SpaceHomePlayer:
|
|
return from
|
|
case to == SpaceHomeOpponent:
|
|
return 25 - from
|
|
case from == SpaceHomePlayer || from == SpaceHomeOpponent:
|
|
if b.Acey() {
|
|
if player == 1 && from == SpaceHomePlayer && b[SpaceEnteredPlayer] == 0 {
|
|
return 25 - to
|
|
} else if player == 2 && from == SpaceHomeOpponent && b[SpaceEnteredOpponent] == 0 {
|
|
return to
|
|
}
|
|
}
|
|
return 0
|
|
case from == SpaceBarPlayer:
|
|
return 25 - to
|
|
case from == SpaceBarOpponent:
|
|
return to
|
|
default:
|
|
diff := to - from
|
|
if diff < 0 {
|
|
return diff * -1
|
|
}
|
|
return diff
|
|
}
|
|
}
|
|
|
|
// HaveRoll returns whether the player has a sufficient die roll for the specified move.
|
|
func (b Board) HaveRoll(from int, to int, player int) bool {
|
|
barSpace := SpaceBarPlayer
|
|
if player == 2 {
|
|
barSpace = SpaceBarOpponent
|
|
}
|
|
if b[barSpace] != 0 && from != barSpace {
|
|
return false
|
|
}
|
|
|
|
delta := int8(b.spaceDiff(player, from, to))
|
|
if delta == 0 {
|
|
return false
|
|
}
|
|
playerDelta := -1
|
|
playerHomeEnd := 6
|
|
if player == 2 {
|
|
playerDelta = 1
|
|
playerHomeEnd = 19
|
|
}
|
|
if b.MayBearOff(player) && !b.Acey() {
|
|
allowGreater := true
|
|
for checkSpace := int8(0); checkSpace < 6-delta; checkSpace++ {
|
|
if b.Checkers(player, playerHomeEnd+int(checkSpace)*playerDelta) != 0 {
|
|
allowGreater = false
|
|
break
|
|
}
|
|
}
|
|
if allowGreater {
|
|
return (b[SpaceRoll1] >= delta || b[SpaceRoll2] >= delta || b[SpaceRoll3] >= delta || b[SpaceRoll4] >= delta)
|
|
}
|
|
}
|
|
return (b[SpaceRoll1] == delta || b[SpaceRoll2] == delta || b[SpaceRoll3] == delta || b[SpaceRoll4] == delta)
|
|
}
|
|
|
|
// UseRoll uses a die roll.
|
|
func (b Board) UseRoll(from int, to int, player int) Board {
|
|
delta := int8(b.spaceDiff(player, from, to))
|
|
if delta == 0 {
|
|
b.Print()
|
|
log.Panic("unknown space diff", from, to, player)
|
|
}
|
|
playerDelta := -1
|
|
playerHomeEnd := 6
|
|
if player == 2 {
|
|
playerDelta = 1
|
|
playerHomeEnd = 19
|
|
}
|
|
var allowGreater bool
|
|
if b.MayBearOff(player) && !b.Acey() {
|
|
allowGreater = true
|
|
for checkSpace := int8(0); checkSpace < 6-delta; checkSpace++ {
|
|
if b.Checkers(player, playerHomeEnd+int(checkSpace)*playerDelta) != 0 {
|
|
allowGreater = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if allowGreater {
|
|
switch {
|
|
case b[SpaceRoll1] >= delta:
|
|
b[SpaceRoll1] = 0
|
|
case b[SpaceRoll2] >= delta:
|
|
b[SpaceRoll2] = 0
|
|
case b[SpaceRoll3] >= delta:
|
|
b[SpaceRoll3] = 0
|
|
case b[SpaceRoll4] >= delta:
|
|
b[SpaceRoll4] = 0
|
|
default:
|
|
b.Print()
|
|
log.Panic("no available roll for move", from, to, player, delta)
|
|
}
|
|
} else {
|
|
switch {
|
|
case b[SpaceRoll1] == delta:
|
|
b[SpaceRoll1] = 0
|
|
case b[SpaceRoll2] == delta:
|
|
b[SpaceRoll2] = 0
|
|
case b[SpaceRoll3] == delta:
|
|
b[SpaceRoll3] = 0
|
|
case b[SpaceRoll4] == delta:
|
|
b[SpaceRoll4] = 0
|
|
default:
|
|
b.Print()
|
|
log.Panic("no available roll for move", from, to, player, delta)
|
|
}
|
|
}
|
|
return b
|
|
}
|
|
|
|
func (b Board) _available(player int) [][]int {
|
|
homeSpace := SpaceHomePlayer
|
|
barSpace := SpaceBarPlayer
|
|
opponentBarSpace := SpaceBarOpponent
|
|
if player == 2 {
|
|
homeSpace = SpaceHomeOpponent
|
|
barSpace = SpaceBarOpponent
|
|
opponentBarSpace = SpaceBarPlayer
|
|
}
|
|
mayBearOff := b.MayBearOff(player)
|
|
onBar := b[barSpace] != 0
|
|
|
|
var moves [][]int
|
|
|
|
if b.Acey() && ((player == 1 && b[SpaceEnteredPlayer] == 0) || (player == 2 && b[SpaceEnteredOpponent] == 0)) && b[homeSpace] != 0 {
|
|
for space := 1; space < 25; space++ {
|
|
v := b[space]
|
|
if ((player == 1 && v >= -1) || (player == 2 && v <= 1)) && b.HaveRoll(homeSpace, space, player) {
|
|
moves = append(moves, []int{homeSpace, space})
|
|
}
|
|
}
|
|
}
|
|
|
|
for from := 0; from < 28; from++ {
|
|
if from == SpaceHomePlayer || from == SpaceHomeOpponent || from == opponentBarSpace || b.Checkers(player, from) == 0 || (onBar && from != barSpace) {
|
|
continue
|
|
}
|
|
if player == 1 {
|
|
for to := 0; to < from; to++ {
|
|
if to == SpaceBarPlayer || to == SpaceBarOpponent || to == SpaceHomeOpponent || (to == SpaceHomePlayer && !mayBearOff) {
|
|
continue
|
|
}
|
|
v := b[to]
|
|
if (player == 1 && v < -1) || (player == 2 && v > 1) || !b.HaveRoll(from, to, player) {
|
|
continue
|
|
}
|
|
moves = append(moves, []int{from, to})
|
|
}
|
|
} else { // TODO clean up
|
|
start := from + 1
|
|
if from == SpaceBarOpponent {
|
|
start = 0
|
|
}
|
|
for to := start; to <= 25; to++ {
|
|
if to == SpaceBarPlayer || to == SpaceBarOpponent || to == SpaceHomeOpponent || (to == SpaceHomeOpponent && !mayBearOff) {
|
|
continue
|
|
}
|
|
v := b[to]
|
|
if (player == 1 && v < -1) || (player == 2 && v > 1) || !b.HaveRoll(from, to, player) {
|
|
continue
|
|
}
|
|
moves = append(moves, []int{from, to})
|
|
}
|
|
}
|
|
}
|
|
|
|
return moves
|
|
}
|
|
|
|
// Available returns legal moves available.
|
|
func (b Board) Available(player int) ([][][]int, []Board) {
|
|
var allMoves [][][]int
|
|
|
|
resultMutex := &sync.Mutex{}
|
|
movesFound := func(moves [][]int) bool {
|
|
resultMutex.Lock()
|
|
for _, f := range allMoves {
|
|
if movesEqual(f, moves) {
|
|
resultMutex.Unlock()
|
|
return true
|
|
}
|
|
}
|
|
resultMutex.Unlock()
|
|
return false
|
|
}
|
|
|
|
var boards []Board
|
|
a := b._available(player)
|
|
maxLen := 1
|
|
for _, move := range a {
|
|
move := move
|
|
newBoard := b.Move(move[0], move[1], player).UseRoll(move[0], move[1], player)
|
|
newAvailable := newBoard._available(player)
|
|
if len(newAvailable) == 0 {
|
|
moves := [][]int{move}
|
|
if !movesFound(moves) {
|
|
allMoves = append(allMoves, moves)
|
|
boards = append(boards, newBoard)
|
|
}
|
|
continue
|
|
}
|
|
for _, move2 := range newAvailable {
|
|
newBoard2 := newBoard.Move(move2[0], move2[1], player).UseRoll(move2[0], move2[1], player)
|
|
newAvailable2 := newBoard2._available(player)
|
|
if len(newAvailable2) == 0 {
|
|
moves := [][]int{move, move2}
|
|
if !movesFound(moves) {
|
|
allMoves = append(allMoves, moves)
|
|
boards = append(boards, newBoard2)
|
|
maxLen = 2
|
|
}
|
|
continue
|
|
}
|
|
for _, move3 := range newAvailable2 {
|
|
newBoard3 := newBoard2.Move(move3[0], move3[1], player).UseRoll(move3[0], move3[1], player)
|
|
newAvailable3 := newBoard3._available(player)
|
|
if len(newAvailable3) == 0 {
|
|
moves := [][]int{move, move2, move3}
|
|
if !movesFound(moves) {
|
|
allMoves = append(allMoves, moves)
|
|
boards = append(boards, newBoard3)
|
|
maxLen = 3
|
|
}
|
|
continue
|
|
}
|
|
for _, move4 := range newAvailable3 {
|
|
newBoard4 := newBoard3.Move(move4[0], move4[1], player).UseRoll(move4[0], move4[1], player)
|
|
moves := [][]int{move, move2, move3, move4}
|
|
if !movesFound(moves) {
|
|
allMoves = append(allMoves, moves)
|
|
boards = append(boards, newBoard4)
|
|
maxLen = 4
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
var newMoves [][][]int
|
|
for i := 0; i < len(allMoves); i++ {
|
|
if len(allMoves[i]) >= maxLen {
|
|
newMoves = append(newMoves, allMoves[i])
|
|
}
|
|
}
|
|
return newMoves, boards
|
|
}
|
|
|
|
func (b Board) Past() bool {
|
|
if b[SpaceBarPlayer] != 0 || b[SpaceBarOpponent] != 0 {
|
|
return false
|
|
}
|
|
var playerFirst, opponentLast int
|
|
for space := 1; space < 25; space++ {
|
|
v := b[space]
|
|
if v == 0 {
|
|
continue
|
|
} else if v > 0 {
|
|
if space > playerFirst {
|
|
playerFirst = space
|
|
}
|
|
} else {
|
|
if opponentLast == 0 {
|
|
opponentLast = space
|
|
}
|
|
}
|
|
}
|
|
return playerFirst < opponentLast
|
|
}
|
|
|
|
func (b Board) Pips(player int) int {
|
|
var pips int
|
|
if b.Acey() {
|
|
if player == 1 && b[SpaceEnteredPlayer] == 0 {
|
|
pips += int(b.Checkers(player, SpaceHomePlayer)) * PseudoPips(player, SpaceHomePlayer)
|
|
} else if player == 2 && b[SpaceEnteredOpponent] == 0 {
|
|
pips += int(b.Checkers(player, SpaceHomeOpponent)) * PseudoPips(player, SpaceHomeOpponent)
|
|
}
|
|
}
|
|
if player == 1 {
|
|
pips += int(b.Checkers(player, SpaceBarPlayer)) * PseudoPips(player, SpaceBarPlayer)
|
|
} else {
|
|
pips += int(b.Checkers(player, SpaceBarOpponent)) * PseudoPips(player, SpaceBarOpponent)
|
|
}
|
|
for space := 1; space < 25; space++ {
|
|
pips += int(b.Checkers(player, space)) * PseudoPips(player, space)
|
|
}
|
|
return pips
|
|
}
|
|
|
|
func (b Board) Blots(player int) int {
|
|
o := opponent(player)
|
|
var pips int
|
|
for space := 1; space < 25; space++ {
|
|
checkers := b.Checkers(player, space)
|
|
if checkers != 1 {
|
|
continue
|
|
}
|
|
pips += checkers * PseudoPips(o, space)
|
|
}
|
|
return pips
|
|
}
|
|
|
|
func (b Board) evaluate(player int, hitScore int, a *Analysis) {
|
|
pips := b.Pips(player)
|
|
score := float64(pips)
|
|
var blots int
|
|
if !a.Past {
|
|
blots = b.Blots(player)
|
|
score += float64(blots)*WeightBlot + float64(hitScore)*WeightHit
|
|
}
|
|
a.Pips = pips
|
|
a.Blots = blots
|
|
a.Hits = hitScore
|
|
a.PlayerScore = score
|
|
a.hitScore = hitScore
|
|
}
|
|
|
|
func (b Board) Evaluation(player int, hitScore int, moves [][]int) *Analysis {
|
|
a := &Analysis{
|
|
Board: b,
|
|
Moves: moves,
|
|
Past: b.Past(),
|
|
player: player,
|
|
chance: 1,
|
|
}
|
|
b.evaluate(player, hitScore, a)
|
|
return a
|
|
}
|
|
|
|
func (b Board) Analyze(available [][][]int, result *[]*Analysis) {
|
|
if len(available) == 0 {
|
|
*result = (*result)[:0]
|
|
return
|
|
}
|
|
|
|
var reuse []*[]*Analysis
|
|
for _, r := range *result {
|
|
if r.result != nil {
|
|
reuse = append(reuse, r.result)
|
|
}
|
|
}
|
|
*result = (*result)[:0]
|
|
reuseLen := len(reuse)
|
|
var reuseIndex int
|
|
|
|
w := &sync.WaitGroup{}
|
|
|
|
past := b.Past()
|
|
w.Add(len(available))
|
|
for _, moves := range available {
|
|
var r *[]*Analysis
|
|
if reuseIndex < reuseLen {
|
|
r = reuse[reuseIndex]
|
|
*r = (*r)[:0]
|
|
reuseIndex++
|
|
} else {
|
|
v := make([]*Analysis, 0, SubAnalysisBufferSize)
|
|
r = &v
|
|
}
|
|
a := &Analysis{
|
|
Board: b,
|
|
Moves: moves,
|
|
Past: past,
|
|
player: 1,
|
|
chance: 1,
|
|
result: r,
|
|
resultMutex: &sync.Mutex{},
|
|
wg: w,
|
|
}
|
|
*result = append(*result, a)
|
|
analysisQueue <- a
|
|
}
|
|
w.Wait()
|
|
|
|
for _, a := range *result {
|
|
if a.player == 1 && !a.Past {
|
|
var oppPips float64
|
|
var oppBlots float64
|
|
var oppHits float64
|
|
var oppScore float64
|
|
var count float64
|
|
for _, r := range *a.result {
|
|
oppPips += float64(r.Pips)
|
|
oppBlots += float64(r.Blots)
|
|
oppHits += float64(r.Hits)
|
|
oppScore += r.PlayerScore
|
|
count++
|
|
}
|
|
if count == 0 {
|
|
a.Score = a.PlayerScore
|
|
} else {
|
|
a.OppPips = (oppPips / count)
|
|
a.OppBlots = (oppBlots / count)
|
|
a.OppHits = (oppHits / count)
|
|
a.OppScore = (oppScore / count)
|
|
score := a.PlayerScore
|
|
if !math.IsNaN(oppScore) {
|
|
score += a.OppScore * WeightOppScore
|
|
}
|
|
a.Score = score
|
|
}
|
|
} else {
|
|
a.Score = a.PlayerScore
|
|
}
|
|
}
|
|
|
|
sort.Slice(*result, func(i, j int) bool {
|
|
return (*result)[i].Score < (*result)[j].Score
|
|
})
|
|
}
|
|
|
|
func (b Board) ChooseDoubles(result *[]*Analysis) int {
|
|
if !b.Acey() {
|
|
return 0
|
|
}
|
|
|
|
bestDoubles := 6
|
|
bestScore := math.MaxFloat64
|
|
|
|
var available [][][]int
|
|
for i := 0; i < 6; i++ {
|
|
doubles := int8(i + 1)
|
|
bc := b
|
|
bc[SpaceRoll1], bc[SpaceRoll2], bc[SpaceRoll3], bc[SpaceRoll4] = doubles, doubles, doubles, doubles
|
|
|
|
available, _ = bc.Available(1)
|
|
bc.Analyze(available, result)
|
|
if len(*result) > 0 && (*result)[0].Score < bestScore {
|
|
bestDoubles = i + 1
|
|
bestScore = (*result)[0].Score
|
|
}
|
|
}
|
|
|
|
return bestDoubles
|
|
}
|
|
|
|
func (b Board) Print() {
|
|
log.Printf("%+v", b)
|
|
}
|
|
|
|
func opponent(player int) int {
|
|
if player == 1 {
|
|
return 2
|
|
}
|
|
return 1
|
|
}
|
|
|
|
func spaceValue(player int, space int) int {
|
|
if space == SpaceHomePlayer || space == SpaceHomeOpponent || space == SpaceBarPlayer || space == SpaceBarOpponent {
|
|
return 25
|
|
} else if player == 1 {
|
|
return space
|
|
} else {
|
|
return 25 - space
|
|
}
|
|
}
|
|
|
|
func PseudoPips(player int, space int) int {
|
|
v := 6 + spaceValue(player, space) + int(math.Exp(float64(spaceValue(player, space))*0.2))*2
|
|
if space == SpaceHomePlayer || space == SpaceHomeOpponent || (player == 1 && (space > 6 || space == SpaceBarPlayer)) || (player == 2 && (space < 19 || space == SpaceBarOpponent)) {
|
|
v += 24
|
|
}
|
|
return v
|
|
}
|
|
|
|
func movesEqual(a [][]int, b [][]int) bool {
|
|
l := len(a)
|
|
if len(b) != l {
|
|
return false
|
|
}
|
|
for _, m := range a {
|
|
switch m[0] {
|
|
case SpaceBarPlayer, SpaceBarOpponent:
|
|
return false
|
|
}
|
|
switch m[1] {
|
|
case SpaceHomePlayer, SpaceHomeOpponent:
|
|
return false
|
|
}
|
|
}
|
|
switch l {
|
|
case 0:
|
|
return true
|
|
case 1:
|
|
return a[0][0] == b[0][0] && a[0][1] == b[0][1]
|
|
case 2:
|
|
return (a[0][0] == b[0][0] && a[0][1] == b[0][1] && a[1][0] == b[1][0] && a[1][1] == b[1][1]) || // 1, 2
|
|
(a[0][0] == b[1][0] && a[0][1] == b[1][1] && a[1][0] == b[0][0] && a[1][1] == b[0][1]) // 2, 1
|
|
case 3:
|
|
if a[0][0] == b[0][0] && a[0][1] == b[0][1] { // 1
|
|
if (a[1][0] == b[1][0] && a[1][1] == b[1][1] && a[2][0] == b[2][0] && a[2][1] == b[2][1]) || // 2, 3
|
|
(a[1][0] == b[2][0] && a[1][1] == b[2][1] && a[2][0] == b[1][0] && a[2][1] == b[1][1]) { // 3, 2
|
|
return true
|
|
}
|
|
}
|
|
if a[0][0] == b[1][0] && a[0][1] == b[1][1] { // 2
|
|
if (a[1][0] == b[0][0] && a[1][1] == b[0][1] && a[2][0] == b[2][0] && a[2][1] == b[2][1]) ||
|
|
(a[1][0] == b[2][0] && a[1][1] == b[2][1] && a[2][0] == b[0][0] && a[2][1] == b[0][1]) {
|
|
return true
|
|
}
|
|
}
|
|
if a[0][0] == b[2][0] && a[0][1] == b[2][1] { // 3
|
|
if (a[1][0] == b[0][0] && a[1][1] == b[0][1] && a[2][0] == b[1][0] && a[2][1] == b[1][1]) || // 1, 2
|
|
(a[1][0] == b[1][0] && a[1][1] == b[1][1] && a[2][0] == b[0][0] && a[2][1] == b[0][1]) { // 2, 1
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
case 4:
|
|
if a[0][0] == b[0][0] && a[0][1] == b[0][1] { // 1
|
|
if a[1][0] == b[1][0] && a[1][1] == b[1][1] { // 2
|
|
if (a[2][0] == b[2][0] && a[2][1] == b[2][1] && a[3][0] == b[3][0] && a[3][1] == b[3][1]) || // 3,4
|
|
(a[2][0] == b[3][0] && a[2][1] == b[3][1] && a[3][0] == b[2][0] && a[3][1] == b[2][1]) { // 4,3
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[2][0] && a[1][1] == b[2][1] { // 3
|
|
if (a[2][0] == b[1][0] && a[2][1] == b[1][1] && a[3][0] == b[3][0] && a[3][1] == b[3][1]) || // 2,4
|
|
(a[2][0] == b[3][0] && a[2][1] == b[3][1] && a[3][0] == b[1][0] && a[3][1] == b[1][1]) { // 4,2
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[3][0] && a[1][1] == b[3][1] { // 4
|
|
if (a[2][0] == b[2][0] && a[2][1] == b[2][1] && a[3][0] == b[1][0] && a[3][1] == b[1][1]) || // 3,2
|
|
(a[2][0] == b[1][0] && a[2][1] == b[1][1] && a[3][0] == b[2][0] && a[3][1] == b[2][1]) { // 2,3
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
if a[0][0] == b[1][0] && a[0][1] == b[1][1] { // 2
|
|
if a[1][0] == b[0][0] && a[1][1] == b[0][1] { // 1
|
|
if (a[2][0] == b[2][0] && a[2][1] == b[2][1] && a[3][0] == b[3][0] && a[3][1] == b[3][1]) || // 3,4
|
|
(a[2][0] == b[3][0] && a[2][1] == b[3][1] && a[3][0] == b[2][0] && a[3][1] == b[2][1]) { // 4,3
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[2][0] && a[1][1] == b[2][1] { // 3
|
|
if (a[2][0] == b[3][0] && a[2][1] == b[3][1] && a[3][0] == b[0][0] && a[3][1] == b[0][1]) || // 4,1
|
|
(a[2][0] == b[0][0] && a[2][1] == b[0][1] && a[3][0] == b[3][0] && a[3][1] == b[3][1]) { // 1,4
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[3][0] && a[1][1] == b[3][1] { // 4
|
|
if (a[2][0] == b[2][0] && a[2][1] == b[2][1] && a[3][0] == b[0][0] && a[3][1] == b[0][1]) || // 3,1
|
|
(a[2][0] == b[0][0] && a[2][1] == b[0][1] && a[3][0] == b[2][0] && a[3][1] == b[2][1]) { // 1,3
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
if a[0][0] == b[2][0] && a[0][1] == b[2][1] { // 3
|
|
if a[1][0] == b[0][0] && a[1][1] == b[0][1] { // 1
|
|
if (a[2][0] == b[1][0] && a[2][1] == b[1][1] && a[3][0] == b[3][0] && a[3][1] == b[3][1]) || // 2,4
|
|
(a[2][0] == b[3][0] && a[2][1] == b[3][1] && a[3][0] == b[1][0] && a[3][1] == b[1][1]) { // 4,2
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[1][0] && a[1][1] == b[1][1] { // 2
|
|
if (a[2][0] == b[0][0] && a[2][1] == b[0][1] && a[3][0] == b[3][0] && a[3][1] == b[3][1]) || // 1,4
|
|
(a[2][0] == b[3][0] && a[2][1] == b[3][1] && a[3][0] == b[0][0] && a[3][1] == b[0][1]) { // 4,1
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[3][0] && a[1][1] == b[3][1] { // 4
|
|
if (a[2][0] == b[1][0] && a[2][1] == b[1][1] && a[3][0] == b[0][0] && a[3][1] == b[0][1]) || // 2,1
|
|
(a[2][0] == b[0][0] && a[2][1] == b[0][1] && a[3][0] == b[1][0] && a[3][1] == b[1][1]) { // 1,2
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
if a[0][0] == b[3][0] && a[0][1] == b[3][1] { // 4
|
|
if a[1][0] == b[0][0] && a[1][1] == b[0][1] { // 1
|
|
if (a[2][0] == b[2][0] && a[2][1] == b[2][1] && a[3][0] == b[1][0] && a[3][1] == b[1][1]) || // 3,2
|
|
(a[2][0] == b[1][0] && a[2][1] == b[1][1] && a[3][0] == b[2][0] && a[3][1] == b[2][1]) { // 2,3
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[1][0] && a[1][1] == b[1][1] { // 2
|
|
if (a[2][0] == b[0][0] && a[2][1] == b[0][1] && a[3][0] == b[2][0] && a[3][1] == b[2][1]) || // 1,3
|
|
(a[2][0] == b[2][0] && a[2][1] == b[2][1] && a[3][0] == b[0][0] && a[3][1] == b[0][1]) { // 3,1
|
|
return true
|
|
}
|
|
}
|
|
if a[1][0] == b[2][0] && a[1][1] == b[2][1] { // 3
|
|
if (a[2][0] == b[0][0] && a[2][1] == b[0][1] && a[3][0] == b[1][0] && a[3][1] == b[1][1]) || // 1,2
|
|
(a[2][0] == b[1][0] && a[2][1] == b[1][1] && a[3][0] == b[0][0] && a[3][1] == b[0][1]) { // 2,1
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
default:
|
|
log.Panicf("more than 4 moves were provided: %+v %+v", a, b)
|
|
return false
|
|
}
|
|
}
|